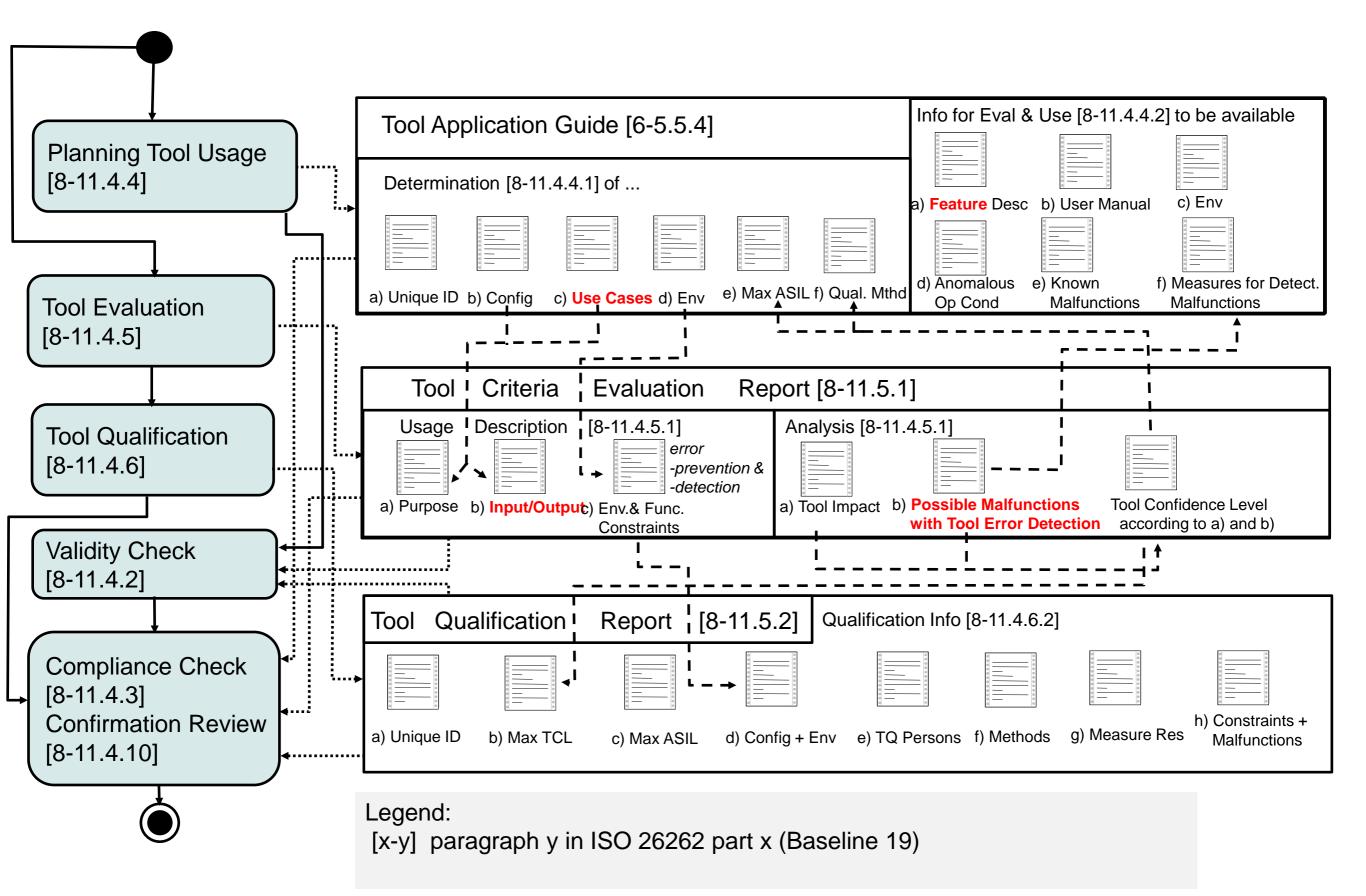


Applying ISO26262 to Tool Qualification

Dr. Oscar Slotosch, Validas AG Marco Reiling, Wind River

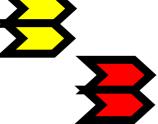


- Motivation: ISO 26262: Tool Confidence
- Method: Tool Chain Analysis
 - General Error Model
- Validas Tool Chain Analyzer
- Wind River Diab Compiler Qualification Kit

- ► Motivation: ISO 26262: Tool Confidence
- Method: Tool Chain Analysis
 - General Error Model
- Validas Tool Chain Analyzer
- Wind River Diab Compiler Qualification Kit

Confidence in Use of Tools 26262-8

ISO 26262-8, Chapter 11: "Confidence in the use of software tools"


- Classification in "Tool Confidence Level (TCL)"
- Tool Impact (TI)
 - TI1: no impact => Tool is TCL1 →

- TI2: some impact
 - Tool Error Detection/prevention probability (TD)
 - TD1:high confidence => Tool is TCL1

– TD2:medium confidence => Tool is TCL2

TD3: low/unkown confidence => Tool is TCL3

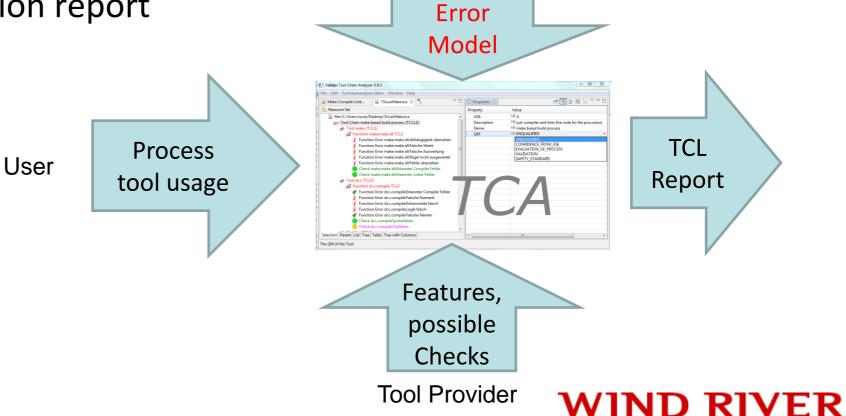
Justification? Dokumentation? Confirmation Review!

Table 2 — Qualification of software tools classified TCL3

Methods		ASIL			
		Α	В	C	D
1a	Increased confidence from use according to 11.4.7	++	++	+	+
1b	Evaluation of the tool development process according to 11.4.8	++	++	+	+
1c	Validation of the software tool according to 11.4.9	+	+	++	++
1d	Development in compliance with a safety standard ^a	+	+	++	++

- ▶ Motivation: ISO 26262: Tool Confidence
- Method: Tool Chain Analysis
 - General Error Model
- Validas Tool Chain Analyzer
- Wind River Diab Compiler Qualification Kit

Modeling Method / Process for TCA


1. Planning:

- 1. Build a formal model of tool usage based on tool and process information
- 2. Validate the model (Review, Checklists)

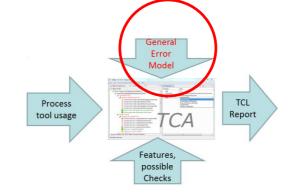
2. Tool Evaluation

- 1. Systematically build an error model (black box / glass box)
- 2. Model detection and prevention (including assumptions)
- 3. Validate assumptions and error/detection/prevention model
- 4. Compute the TCL (with/without assumptions)
- 5. Generate tool evaluation report

3. Tool Qualification

Validas

General


Tool Chain Analysis & Error Model

Motivation / Requirements for Error Model

- One error model describes possible tool errors in every tool
- Error model should be extensible (for new kinds of tools)
- Error model should cover all potential errors
- Error model should be acceptable (agreeable and simple to apply)
- Error model should cover the existing (known) errors
- Systematic ("Repeatable") approach needed

General Error Model

Creation Process

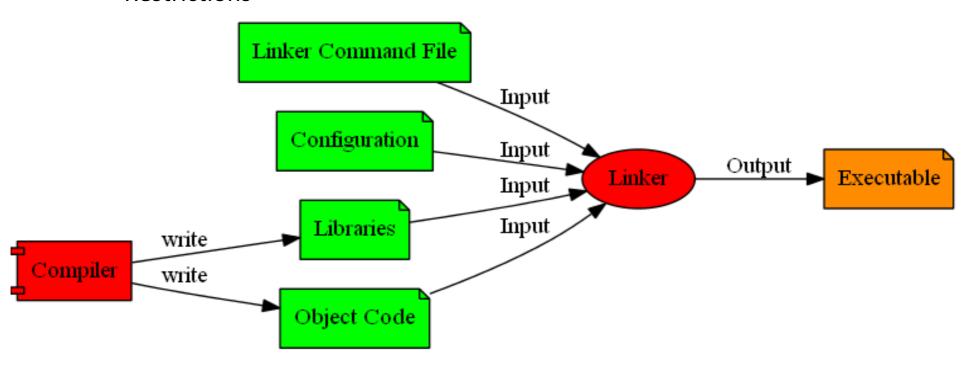
- Inductive: From known errors to classes of potential errors ("Observing")
- Deductive: From tool to potential errors ("Analytic Approach")
 - Black-Box Approach: Consider Tool Outputs
 - Default errors for typical artifact attributes (XML, Code,...)
 - White-Box Approach: Consider Tool Structure (features & tool components)
 - Default errors for typical tool attributes (Optimizing / Parsing / Searching /...)

Management:

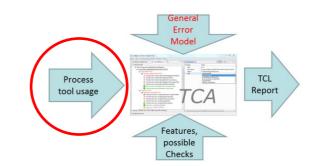
- Relation between errors: "Subsuming"
- Assignment of errors to tool chain

Validation of error model

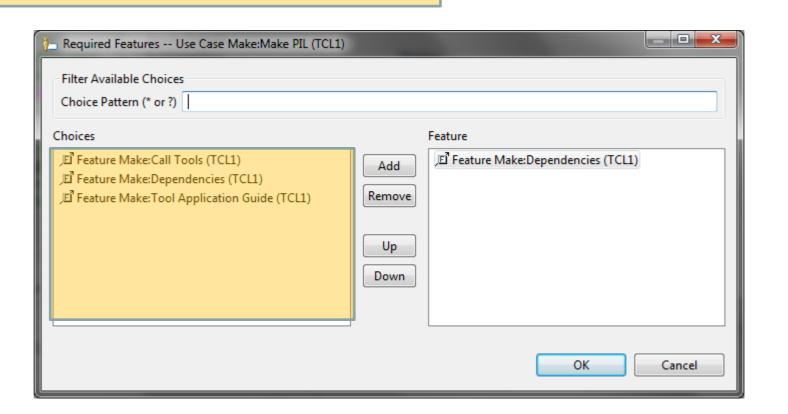
error model with Default Classes


Tool / Feature Model

Process
tool usage


Features,
possible
Checks

- Tool provider / expert creates this model
- Based on tool analysis
- Consisting of
 - Tools
 - Features with
 - input/output artifacts
 - Potential errors
 - Mitigation possibilities with probabilities (HIGH / MEDIUM / LOW)
 - Checks
 - Restrictions


Process/Use Case Model

- User creates this model
- Based on his process
- Consisting of
 - Tools
 - Artifacts
 - Use-Cases with
 - input/output artifacts
 - Required features (available from Tool model)

Potential errors are inferred from required features (including proposals for mitigations)

Determine Tool Confidence Level

Can be computed automatically from the model

User

Process tool usage

Features,

possible

Checks

Tool Provider

Create a report to document the results

- Motivation: ISO 26262: Tool Confidence
- Method: Tool Chain Analysis
 - General Error Model
- Validas Tool Chain Analyzer
- Wind River Diab Compiler Qualification Kit

Tool Chain Analyzer (TCA)

- Automatically determines the TCLs of tools and tool chains
- Bases on a formal model of
 - Tools
 - Use cases (and features)
 - Errors
 - Detection/prevention mechanisms
 - Artifacts (inputs & outputs)
 - Qualifications for tools & features
- Supports generic error models
- Checks the validity of qualifications with a
- Generates reports (.docx)

Derived Error Model in TCA

```
Default Error Attributes

■ Margin Tool Compiler (TCL3)

     Use Case Compiler: Compile With All Features (TCL3)
     Feature Compiler: Assembler (TCL3)
   Derived Feature Error Compiler.Code Generator:Created File Wrongly
            Derived Feature Error Compiler.Code Generator:Created Incomplete File
            Derived Feature Error Compiler.Code Generator:Created No File
            Derived Feature Error Compiler.Code Generator:Created Wrong File
            Derived Feature Error Compiler.Code Generator:Environment Ressources
            Derived Feature Error Compiler.Code Generator:Environment System Wrong
            Derived Feature Error Compiler.Code Generator:Environment Variables Wrong
            Derived Feature Error Compiler.Code Generator:Object Code - Computation Error
            Derived Feature Error Compiler.Code Generator:Object Code - Syntax Error
            Derived Feature Error Compiler, Code Generator: Object Code - Syntax with Semantic Error
            Derived Feature Error Compiler.Code Generator:Option Defect
            Derived Feature Error Compiler.Code Generator:Option Ignored
            Derived Feature Error Compiler.Code Generator:Parsed File Wrongly
            Derived Feature Error Compiler.Code Generator:Parsed Wrong File
         Derived Feature Error Compiler. Code Generator: Transformation Error
   ▶ Æ Feature Compiler: C Parser (TCL3)
     Feature Compiler:Linker (TCL3)
   ▶ # Feature Compiler:Low Level Optimizer (TCL3)
   Feature Compiler: Preprocessor (TCL3)
```

- Developed from Validas AG within European research project RECOMP
 - Rich client, based on Eclipse modeling framework
- Evaluation available at www.validas.de/TCA152.zip

- Motivation: ISO 26262: Tool Confidence
- Method: Tool Chain Analysis
 - General Error Model
- Validas Tool Chain Analyzer
- Wind River Diab Compiler Qualification Kit

Wind River Diab Compiler

- Provides Classification Information
 - Features
 - Potential Errors
- Provides Qualification Support (Qualification Kit)
 - Instrumented Compiler
 - Tests
 - Application Method
- More Details will be presented at http://www.embedded-konferenz.de/

WIND RIVER

Summary

- Systematic method to fulfill the ISO 26262 tool requirements
- Generic Error Model for repeatable results
- Validas Tool Chain Analyzer
- Wind River Diab Compiler Qualification Kit

Thank You!

Arnulfstraße 27 80335 München www.validas.de info@validas.de